Zika vírus and neurological manifestation: a systematic review

Zika vírus e manifestações neurológicas: uma revisão sistemática
Zika vírus y manifestación neurológica: una revisión sistemática

RESUMO
Objetivo: Determinar as principais manifestações neurológicas decorrentes da infecção humana pelo vírus Zika. Metodologia: Revisão sistemática de artigos publicados no Science Direct e Scielo, com o seguinte algoritmo de busca: Zika vírus e manifestações neurológicas e doenças do sistema nervoso. Estudos epidemiológicos relatando distúrbios neurológicos relacionados à infecção pelo vírus Zika foram incluídos. Estudos em animais e revisões sistemáticas foram excluídos. Os dados foram extraídos e selecionados por 3 pesquisadores, que concordaram com os artigos selecionados. Resultados: Foram selecionados 26 artigos nesta revisão, que revelaram como principais alterações Síndrome de Guillain-Barré, Microcefalia, encefalite, meningoencefalite, mielite, paralisia facial, alterações congênitas, alterações oculares, além de alterações radiológicas e eletroencefalográficas. Conclusão: A infecção pelo vírus Zika causou uma série de alterações neurológicas na população infectada, entre adultos ou recém-nascidos. O acometimento mais frequente foi a síndrome de Guillain-Barré, sendo a microcefalia a mais grave decorrente de infecção no período pré-natal.

DESCRITORES: Zika vírus; Manifestações neurológicas; Doenças do sistema nervoso.

ABSTRACT
Objective: To determine the main neurological manifestations resulting from human infection by the Zika virus. Methodology: Systematic review of articles published in Science Direct and Scielo, with the following search algorithm: Zika virus and neurological manifestations and diseases of the nervous system. Epidemiological studies reporting neurological disorders related to Zika virus infection were included. Animal studies and systematic reviews were excluded. Data was extracted and screened by 3 researchers, who agreed on the articles selected. Results: 26 articles were selected in this review, which revealed Guillain-Barré syndrome, microcephaly, encephalitis, meningoencephalitis, myelitis, facial paralysis, congenital alterations, ocular alterations, as well as radiological and electroencephalographic alterations as the main alterations. Conclusion: Zika virus infection has caused a series of neurological alterations in the infected population, whether adults or newborns. The most common condition was Guillain-Barré syndrome, with microcephaly being the most serious as a result of prenatal infection.

RESUMEN
Objetivo: Determinar las principales manifestaciones neurológicas resultantes de la infección humana por el virus Zika. Metodología: Revisión sistemática de artículos publicados en Science Direct y Scielo, con el siguiente algoritmo de búsqueda: Zika virus and neurological manifestations and diseases of the nervous system. Se incluyeron los estudios epidemiológicos que informaban de trastornos neurológicos relacionados con la infección por el virus Zika. Se excluyeron los estudios con animales y las revisiones sistemáticas. Los datos fueron extraídos y revisados por 3 investigadores, que acordaron los artículos seleccionados. Resultados: En esta revisión se seleccionaron 26 artículos, que revelaron como principales alteraciones el síndrome de Guillain-Barré, microcefalia, encefalitis, meningoencefalitis, mielitis, parálisis facial, cambios congénitos, cambios oculares, así como cambios radiológicos y electroencefalográficos. Conclusión: La infección por el virus Zika ha causado una serie de alteraciones neurológicas en la población infectada, ya sean adultos o recién nacidos. La afeción más frecuente fue el síndrome de Guillain-Barré, siendo la microcefalia la más grave como consecuencia de la infección prenatal.

DESCRITORES: Virus Zika; Manifestaciones neurológicas; Enfermedades del sistema nervioso.
INTRODUCTION

The Zika virus (ZIKV), a flavivirus transmitted by a mosquito with the same disease as the cause of yellow fever and dengue virus, is a major outbreak in the Americas. This flavivirus was first isolated in 1947 from the blood of a monkey sentinel rye (Macaca mulatta) in the Zika forest near Entebbe, Uganda.

Zika fever is an exanthematic disease characterized by symptoms that can last 1 week, with a clinical presentation similar to other arboviral infections such as chikungunya and dengue, including mild fever, rash, arthralgia, arthritis, myalgia, headache, conjunctivitis and edema. Severe cases involving hospitalization are uncommon, and deaths are rare.

In May 2015, the World Health Organization reported the first locally acquired transmission of ZIKV in Brazil, the first case in the Western Hemisphere. The Brazilian Ministry of Health, in November 2015, declared a public health emergency in relation to the abnormal increase of children born with microcephaly in this period, in the state of Pernambuco. There have also been reports of increased incidences of other neurological complications, as well as an increase of 20 incidence of Guillain-Barré syndrome during outbreaks.

This correlation of neurological symptoms with Zika virus infection, stating that unlike most viruses, this mainly affects the human nervous system, resulted in fetal microcephaly, ocular disease and Guillain-Barré syndrome.

The challenge with relationship to Zika virus infection is not only in controlling the disease, but also in the potential sequels of congenital infection and neurological complications. Therefore, due to the paucity of studies that orderly group the neurological complications of higher or lower degree associated to this virus. For this reason, this systematic review aims to determine the main neurological manifestations resulting from human infection with the Zika virus.

METHODS

A systematic review was made of the medical literature that consisted of searching for articles on the neurological manifestations caused by the Zika virus. The searches were carried out in the databases of the scientific literature Science Direct and Scielo. These databases were chosen because they ensure a broad search of existing articles on the topic in question in current literatures. The review was carried out using the following search algorithm: "Zika virus" and "Neurological manifestations" and "Diseases of the nervous system". The following filters were used: human studies, since this review only evaluated the virus's repercussion in the human organism after infection, revealing more reliable data than in other animal organisms; between 2008 and 2018, since there was greater epidemiological repercussion due to the outbreaks in the Brazilian territory. There were no language restrictions when choosing articles. After reading the titles and abstracts were observed epidemiological studies that reported neurological disorders related to Zika virus infections.

The exclusion criteria were: systematic reviews, studies that do not directly address the topic addressed and animal research. Three reviewers (F.P.O.A.S., D.L.S.M. and J.O.S.F.) independently assessed the articles, seeking to examine eligibility through meetings to confirm the choice of studies. In cases of disagreement regarding the articles selected, discussions were held on the relevance of the theme and coherence with the objectives of the research until a common agreement among the reviewers.

The PRISMA11 guideline (Main Items for Systematic Review Reports and Meta-analyses) on systematic reviews explains the importance of distinguishing quality and risk from bias and maintaining focus on evaluation and reporting the latter to undertaking a systematic review. However, in the review worked here, the objective was only in the identification and consolidation of neurological manifestations. Thus, the main objective of the analysis of the studies was to evaluate their quality or risk of bias.

Data extraction was performed independently by three reviewers (F.P.O.A.S., D.L.S.M. and J.O.S.F.) through frequent meetings, seeking to ensure that all
appropriate data were collected. A table (annex-1) was also prepared for the organization of the data of the articles, containing the following items: authors, title, year, type of study, information about the neurological symptoms reported in the study and justification for inclusion in the study.

RESULTS

Following the search mechanisms, 29 articles were found in the databases of ScienceDirect and 76 articles in Scielo, of which, 3 were initially excluded, since they were present in the two databases, leaving 102 articles in total. Then, these articles were submitted to a first screening, which took into account the reading of titles and abstracts. In this first screening were selected the articles seen as potentially relevant to the data collection. After the screening, 74 articles were excluded and 28 were selected. Those 28 selected went through a second screening, which took into consideration the complete reading of the articles. After that, 2 more articles were excluded because they did not report neurological manifestations and 26 were selected for review.

A study proposed to show the epidemiological and clinical characteristics of the Zika virus infection in a descriptive study in which Guillain-Barré syndrome and Microcephaly were the main neurological manifestations of this infection(12).

A multicentric and prospective research, that 47 patients presented manifestations of Guillain-Barré syndrome and 2 patients evolved with symptoms characteristic of encephalitis. To do so, he followed a series of 49 cases of critically ill adult patients with laboratory diagnosis of ZIKV in 16 ICUs from 8 countries(13).

Already in a case-control study, evaluated the possible association between ZIKV infection and Guillain-Barré syndrome during an outbreak in Barranquilla, Colombia, between 2015 and 2016, besides showing the association with cases of facial paralysis(14).

In another study, pregnant women with ZIKV it has a positive association between microcephaly and other structural changes, such as calcifications, corpus callosum abnormalities, cortical malformations, and ventriculomegaly with Zika’s viral infection(15).

In table 1 presents the results of the main neurological manifestations discussed here in comparison with other equivalent reviews of current literature review of neurological manifestations as a result of Zika virus infection.

Table 1: scientific papers revealing neurological changes post infection by Zika virus. Sobral, Ceará, Brazil, 2023

<table>
<thead>
<tr>
<th>AUTHORS</th>
<th>ARTICLE</th>
<th>NEUROLOGICAL MANIFESTATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casale12</td>
<td>Zika virus: An emerging infectious disease with serious perinatal and neurologic complications</td>
<td>Guillain-Barré syndrome; Microcephaly.</td>
</tr>
<tr>
<td>Sebastián13</td>
<td>Zika virus-induced neurological critical illness in Latin America: Severe Guillain-Barré Syndrome and encephalitis.</td>
<td>Guillain-Barré syndrome; Encephalitis.</td>
</tr>
<tr>
<td>Salinas14</td>
<td>Zika virus disease-associated Guillain-Barré syndrome—Barranquilla, Colombia 2015–2016.</td>
<td>Guillain-Barré syndrome; Hyporeflexia; Lower or upper extremity weakness; Facial weakness; Inflammatory demyelinating polyneuropathy(AIDP); Acute motor axonal neuropathy(AMAN).</td>
</tr>
<tr>
<td>Author</td>
<td>Title</td>
<td>Keywords</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sanz Cortes</td>
<td>Clinical Assessment and Brain Findings in a Cohort of Mothers, Fetuses and Infants Infected with Zika Virus.</td>
<td>Microcephaly; Brain volume loss; Calcifications; Callosal anomalies; Cortical malformations; Ventriculomegaly; Brain microcalcifications.</td>
</tr>
<tr>
<td>Chang</td>
<td>The Zika outbreak of the 21st century.</td>
<td>Brain damage; Guillain-Barré syndrome; Microcephaly.</td>
</tr>
<tr>
<td>Anaya</td>
<td>A comprehensive analysis and immunobiology of autoimmune neurological syndromes during the Zika virus outbreak in Cúcuta, Colômbia.</td>
<td>Guillain-Barré syndrome; Transverse myelitis; Encephalitis; Peripheral facial palsy; Thoracolumbosacral myelopathy.</td>
</tr>
<tr>
<td>Carvalho</td>
<td>Sleep EEG patterns in infants with congenital Zika virus syndrome.</td>
<td>Microcephaly; Hypsarrhythmia; Interictal epileptogenic activity; Background asymmetry.</td>
</tr>
<tr>
<td>Salinas</td>
<td>Incidence and clinical characteristics of Guillain-Barré syndrome before the introduction of Zika virus in Puerto Rico.</td>
<td>Guillain-Barré syndrome; Polynepropathy.</td>
</tr>
<tr>
<td>Linden</td>
<td>Discordant clinical outcomes of congenital Zika virus infection in twin pregnancies.</td>
<td>Microcephaly; Ventriculomegaly; Calcifications; Hypoplasia.</td>
</tr>
<tr>
<td>Peixoto</td>
<td>Computed tomography and magnetic resonance imaging findings in infants with microcephaly potentially related to congenital Zika virus infection.</td>
<td>Microcephaly; Calcifications; Ventriculomegaly; Posterior fossa alterations; Malformations of cortical development; Lissencephaly; Polymicrogyria; Colpocephaly; Hemisphere hypoplasia.</td>
</tr>
<tr>
<td>Ribeiro</td>
<td>Microcephaly in Piauí, Brazil: a descriptive study during a Zika virus epidemic, 2015-2016.</td>
<td>Microcephaly; Calcifications; Brain atrophies; Lysencephaly; Ventriclemegaly; Digenesia.</td>
</tr>
<tr>
<td>Castro</td>
<td>Presumed Zika virus-related congenital brain malformations: the spectrum of CT and MRI findings in fetuses and newborns.</td>
<td>Microcephaly; Ventriculomegaly; Reduction of white matter thickness; Severe Sylvian fissure simplification; Abnormal sulcation; Diffuse volumetric loss of cerebellar hemispheres; Cerebellar hypoplasia; Enlarged cisterna magna.</td>
</tr>
<tr>
<td>Cabral</td>
<td>Clinical-epidemiological description of live births with microcephaly in the state of Sergipe, 2015.</td>
<td>Microcephaly; Agenesis of corpus callosum; ysencephaly; Absence of midline; Ventriculomegaly; Headache.</td>
</tr>
<tr>
<td>Nascimento</td>
<td>Teratogens: a public health issue – a Brazilian overview.</td>
<td>Microcephaly; Intellectual disability; General developmental delay; Intellectual disabilities; Cognitive impairment; Attention deficit/hyperactivity; Autism.</td>
</tr>
<tr>
<td>Malta</td>
<td>Guillain-Barré syndrome and other neurological manifestations possibly related to Zika virus infection in municipalities of Bahia, 2015.</td>
<td>Guillain-Barré syndrome.</td>
</tr>
<tr>
<td>Coronell-Rodríguez</td>
<td>Infección por virus del Zika en el embarazo, impacto fetal y neonatal.</td>
<td>Microcephaly; Congenital syndrome of zika;</td>
</tr>
<tr>
<td>Vargas</td>
<td>Characteristics of the first cases of microcephaly possibly related to the Zika virus reported in the Metropolitan Region of Recife, Pernambuco.</td>
<td>Microcephaly; Cerebral calcifications; Ventriculomegaly;Lysencephaly.</td>
</tr>
</tbody>
</table>
DISCUSSION

Different neurological manifestations were identified in association with the Zika virus in this literature review, such as: Guillain-Barré syndrome, Microcephaly, encephalitis, meningoencephalitis, myelitis, facial paralysis, congenital alterations, ocular alterations, radiological and electroencephalographic alterations, etc. among other manifestations that are usually forgotten. Evidence has shown that Guillain-Barré syndrome and microcephaly are the most frequently reported manifestations in the literature, leading us to infer that these are the most prevalent manifestations to date.

Corroborating with this observation about the increasing index of microcephaly, a review showed the main epidemiological characteristics and atypical manifestations, mainly neurological, that although the incidence between Zika virus and pregnant is not well known, microcephaly increased more than 20 times in newborns after outbreaks of Zika virus infection (2).

Guillain-Barré syndrome has in recent years been one of the most correlated neurological manifestations with ZIKV infection. In this review, 10 articles were found in which this correlation was found. However, according to another study, the pathophysiological causality between ZIKV and GBS infection has not yet been proven and a possible mechanism can only be hypothesized (3).

Among other neurological complications other than those most prevalent, a study correlates ZIKV infection with the development of encephalitis, meningoencephalitis, facial paralysis and myelitis (4). These findings corroborate this review as evidencing the possibility of developing other neurological disorders other than those normally related to this infection, such as microcephaly and Guillain-Barré.

Going further as to the demonstration of the variety of neurological manifestations provoked by the Zika virus, a research reveals ocular manifestations resulting from this infection, in which they have been more frequent and more and

<table>
<thead>
<tr>
<th>Author</th>
<th>Description</th>
<th>Manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventura</td>
<td>Ophthalmological findings in infants with microcephaly and presumable intrauterus Zika virus infection.</td>
<td>Cerebral calcifications; Microcephaly; Nystagmus; Macular retinal changes; Hypoplasia of the optic nerve; Exophoria; Chorioretinal atrophy; Foveal reflex loss.</td>
</tr>
<tr>
<td>Alves</td>
<td>Epileptic seizures in children with congenital Zika virus syndrome.</td>
<td>Epileptic seizure; Spasms; Generalized tonic seizures.</td>
</tr>
<tr>
<td>Souza</td>
<td>Altered intrauterine ultrasound, fetal head circumference growth and neonatal outcomes among suspected cases of congenital Zika syndrome in Brazil.</td>
<td>Microcephaly.</td>
</tr>
<tr>
<td>Pinheiro</td>
<td>Neurological manifestations of Chikungunya and Zika infections.</td>
<td>Meningoencephalitis; Meningoencephalomyeloradiculitis; Myeloradiculitis; Myelitis; Myeloneuropathy; Guillain-Barré syndrome.</td>
</tr>
<tr>
<td>Albinagorta</td>
<td>Fetal health and ultrasonographic diagnosis in perinatal infection due to Zika virus.</td>
<td>Microcephaly; Ventriculomegaly; Periventricular and intraparenchymal calcifications; Agenesis or dysgenesis of the corpus callosum; Alterations of cortical development; Brain atrophy; Alterations of the cerebellum and brainstem; Ocular abnormalities; Congenital syndrome of Zika.</td>
</tr>
<tr>
<td>Zoghbi</td>
<td>The arrival of Zika virus to Venezuela and its possible footprint in mother-child health. An unmatchable discussion.</td>
<td>Microcephaly; Epilepsy; Cerebral palsy; Mental retardation.</td>
</tr>
<tr>
<td>Brito</td>
<td>Zika in Pernambuco: rewriting the first outbreak.</td>
<td>Microcephaly.</td>
</tr>
<tr>
<td>Aspilcueta-Gho</td>
<td>Zika virus infection in Peru: from threat to a health problem.</td>
<td>Guillain-Barré syndrome; Microcephaly.</td>
</tr>
<tr>
<td>Perret</td>
<td>Zika virus, guilty or innocent?</td>
<td>Guillain-Barré syndrome; Microcephaly; Meningoencephalitis.</td>
</tr>
</tbody>
</table>
more well described as in the congenital ocular syndrome resulting from Zika. This may be due to the steady expansion in arbovirus epidemics, and partly due to climate change and globalization, where it has occurred more frequently even in Europe. These ophthalmic changes are also cited in this review, and despite increasing studies on this change, it is still an unexplored manifestation in relation to other neurological changes caused by the Zika virus.

Analyzing the changes caused by the Zika virus from another perspective, an article reported that neuroimaging findings in the congenital syndrome by ZIKV are not pathognomonic, but the diagnosis can be suggested when associated with compatible clinical data present. The craniofacial disproportion with microcephalic aspect associated with calcifications predominating in the cortical-subcortical junction are the main radiological findings in this syndrome. These image data showing calcifications in the CNS corroborate with the present results in this research, which reports, among other alterations, findings of craniocerebral calcification present in the fetuses when searched around the fifth month of gestation.

Concomitant with this imaging evaluation, another article reports the importance of imaging exams in association with laboratories during gestation, in order to diagnose the early neurological changes in pregnant women infected with Zika virus. Because these changes are usually found in fetal brain tissue in a reverse transcriptase polymerase chain reaction (RT-PCR) assay, with consistent findings in electron microscopy. Thus, the search for complementary exams that show alterations in less specific neurological findings, such as hydrocephalus and multifocal dystrophic calcifications in the cortex and subcortical white matter, associated cortical displacement and moderate focal inflammation may be very useful in preventing further complications due to this.

At the end of this summation of literary information and scientific evidence regarding the correlation of the Zika virus and the neurological manifestations resulting from its infection, there is still a limitation to explain the pathophysiological mechanism of viral action on nervous tissue, despite the already documented manifestations.

In summary, the relevance of all the information contained in the research is highlighted by bringing to the reader’s knowledge the various neurological manifestations associated with zika virus infection, often not known by most health professionals due to the lack of further research and reading in the area. Studies in this field are still focused on reporting the most serious or most prevalent manifestations of the disease, leaving a gap to be filled in on the other, no less important, changes caused by this arbovirus.

CONCLUSION

From the literature review of this review we can conclude that Guillain-Barre syndrome and microcephaly are the neurological manifestations most correlated with Zika virus infection in current literature. Thus, in terms of citations, we can infer that they are the most prevalent and described, but, other enumerations alterations, not less important also occur. The knowledge of the vast modification caused in the nervous system by the viral infection of the Zika, suggests the adoption of early therapeutic interventions and allows new prognosis regarding the disease. In addition to reinforcing the need for the adoption of prophylactic measures against the numerous functional and organic losses caused in the human organism.

REFERENCES

Zika vírus and neurological manifestation: a systematic review

